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Abstract— A mechanical system that comprises of coupled 

oscillators could have a complex and even nonperiodic 

motion. However, there exists a pattern in which the motion 

of such mechanical system can be completely described as the 

superposition of modes that oscillate at well-defined 

frequency. These normal modes correspond to the 

eigenvectors of the space of all displacements of each 

oscillator. This paper will demonstrate normal modes in a 

mechanical system consisting of rigid solid objects and 

springs, though the concept could generalize to other 

oscillating systems in other discipline of science. 
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I.   INTRODUCTION 

An oscillation in physics is a physical quantity or a 

measure that varies periodically in time about a central 

value. Examples of Oscillators include swinging 

pendulum, electrical circuit of inductors and capacitors, 

and the vibrations of the atoms of a molecule.  

In an oscillating system with more than one degree of 

freedom, the variables influence one another leading to a 

more complex behavior. The motion of such compound 

oscillator is harder to describe but nonetheless still 

possible. By resolving the system into normal modes, the 

behavior of the system becomes a linear superposition of 

these modes that is simpler and efficient. 

This paper will try to demonstrate the decomposition of 

oscillating system into normal modes in simple mechanical 

systems. A generalized form that applies to other 

oscillating system will be shown. 

 

II.  SIMPLE HARMONIC OSCILLATOR 

An oscillation is a repetitive variation or fluctuation in a 

system about a central equilibrium position. It occurs when 

an object or quantity moves back and forth in a regular 

manner due to a restoring force that brings it back toward 

its equilibrium state. Oscillations can occur in various 

forms, such as mechanical vibrations in a pendulum, 

electrical oscillations in circuits, or even wave-like 

phenomena in fluids and light. The key characteristics of 

oscillations include their amplitude (the maximum extent 

of displacement from equilibrium), frequency (how many 

oscillations occur in a unit of time), and period (the time it 

takes for one complete oscillation). Oscillatory motion is 

fundamental in many physical systems and plays a crucial 

role in fields ranging from engineering and physics to 

biology and astronomy. 

The simplest form of oscillation is a one-dimensional 

object undergoing simple harmonic motion (abbreviated 

SHM). An example of system that is modeled as a simple 

harmonic oscillator is that of a mass attached to a spring: 

 

Figure 1. A mass suspended by a spring 

Let 𝑦 and 𝑦0 be the length of the spring and the natural 

length of the spring, respectively. According to Hooke’s 

Law, the force exerted on the mass is proportional to 𝑦 −
𝑦0. By Newton’s second law, the equation of motion of the 

mass is 

𝑚
𝑑2𝑦

𝑑𝑡2
= −𝑘(𝑦 − 𝑦0) + 𝑚𝑔. 

This differential equation has solution of the form 

𝑦 = 𝑦0 +
𝑚𝑔

𝑘
+ 𝐴𝑠𝑖𝑛(𝜔𝑡 − 𝜑). 

 

Figure 2. Graph of y with respect to time 

The motion described by this equation is a periodic up-

and-down motion of the mass. The constant 𝐴 and 𝜑 are 

contants determined by the initial state of the system. 

Constant 𝐴 physically represents the amplitude of the 

oscillation whereas 𝜑 is the initial phase angle.  

Of particular interest is the constant 𝜔, which is the 

angular frequency of the oscillation and related to the 

frequency by 𝑓 = 𝜔/2𝜋. This constant is not influenced by 

the initial state of the system, but rather the arrangement of 

mailto:113523063@mahasiswa.itb.ac.id
mailto:2author@gmail.com


Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025 

 

the system itself. In this example, the value of  𝜔 is 

determined by  

𝜔 = √𝑘 𝑚⁄ . 

This angular frequency is thus inherent to the system 

itself and is its natural frequency.  

Any generalized coordinate can also oscillate in a simple 

harmonic manner. Instead of the usual cartesian coordinate 

that denotes position, a generalized coordinate may 

describe the angle of rotation, length along a curve, or even 

a linear combination of other coordinates. A well-chosen 

set of coordinates that spans the whole space of the system 

may simplify the analysis of that system.  

A system that can be modelled as a differential equation 

in generalized coordinate 𝑥 of the form 

𝑑2𝑥

𝑑𝑡2
= −𝜔2𝑥 

undergoes simple harmonic motion with angular frequency 

𝜔 and has equation of motion of the form 

𝑥 = 𝐴𝑠𝑖𝑛(𝜔𝑡 − 𝜑). 

Ideally, a more complex dynamical system such as 

coupled oscillators shall be simplified as a linear 

superposition of simple harmonic oscillators. Normal 

modes provide such simplification and lead to a deeper 

understanding of the behavior of the system. 

 

III.   NORMAL MODES 

In a complex oscillating dynamical system that has two 

or more degrees of freedom, it is easier to analyze the 

system by transforming it into orthogonal coordinates that 

each independently oscillate at a single frequency. These 

component oscillations may be referred to as normal 

modes. 

The most general motion of the system is a linear 

combination of its  normal modes. This is akin to a 

transformation where the modes became the set of basis 

that span the full range of the system.  

Normal modes is found by solving the eigenvalue 

problem that arises from the simultaneous differential 

equation. The frequencies at which the component 

oscillations vibrate are the eigenvalues. As will be 

demonstrated, the process of finding normal modes is 

similar to finding eigenvectors. 

 

A. Example of Normal Mode 

Sometimes the normal modes can be found easily by 

correctly identifying or spotting the set of coordinates that 

nicely describe the system. As an example, consider a 

system of a stick that is suspended from above by two 

massless springs attached to each end of the stick. The stick 

may move vertically or rotate about its center of mass. To 

simplify the problem, the oscillation is small relative to the 

length of the stick. 

 

Figure 3. A stick hung on each end by two springs 

The system has two degrees of freedom and thus two 

normal modes and two equations of motion. One may 

choose the differences of the length of each spring to its 

natural length to be the coordinates of the system referred 

as 𝑦1 and 𝑦2. To apply the physics laws, the coordinates 

must be transformed first. 

The first equation comes from Newton’s second law. 

The vertical position of the center of mass is half of the sum 

of the vertical positions of each end of the stick: 
𝑦1 + 𝑦2

2
= 𝑦. 

Newton’s second law can be applied as if the system is a 

point mass at the center of mass: 

𝑚
𝑑2

𝑑𝑡2
(

𝑦1 + 𝑦2

2
) = 𝑚𝑔 − 𝑘𝑦1 − 𝑘𝑦2 

⟺
𝑑2

𝑑𝑡2
(

𝑦1 + 𝑦2

2
) = 𝑔 −

2𝑘

𝑚
(

𝑦1 + 𝑦2

2
) 

Let 𝑦′ =
𝑦1+𝑦2

2
−

𝑚𝑔

2𝑘
. The center of equilibrium shifts as 

denoted by the term 𝑚𝑔 2𝑘⁄  due to the effect of gravity. 

The equation becomes 

𝑑2𝑦′

𝑑𝑡2
=

2𝑘

𝑚
𝑦′. 

The second equation comes from the Newton’s second 

law for rotation: 𝐼 𝑑2𝜃 𝑑𝑡2⁄ = Σ𝜏 with 𝐼 being the moment 

of inertia of the stick. Let 𝐿 be the length of the stick. By 

using small-angle approximation (sin 𝜃 ≈ 𝜃 and cos 𝜃 ≈
1), the angle of rotation is given by 

𝑦2 − 𝑦1

𝐿
= sin 𝜃 ≈ 𝜃 

and thus  

𝐼
𝑑2

𝑑𝑡2
(

𝑦2 − 𝑦1

𝐿
) =

𝑘𝑦2𝐿

2
−

𝑘𝑦1𝐿

2
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Figure 4. The same system now parametrized by different 

variables 

The two equations can be simplified into the following 

set of equations: 

𝑑2𝑦′

𝑑𝑡2
=

2𝑘

𝑚
𝑦′, 

𝑑2

𝑑𝑡2
(

𝑦2 − 𝑦1

𝐿
) =

𝑘𝐿2

2𝐼
(

𝑦2 − 𝑦1

𝐿
). 

These differential equations are of the SHM differential 

equation form in terms of variables 𝑦′ and 
𝑦2−𝑦1

𝐿
. Because 

these equations are independent of each other, they each 

denote a normal mode, and the variables are normal 

coordinates of the system. It turns out that these normal 

modes correspond to the constraint of the system, denoting 

the vertical motion of the center of mass and the rotational 

motion. In these new coordinates the equations of motion 

are as follow: 

𝑦′ = 𝐴𝑠𝑖𝑛 (√
2𝑘

𝑚
𝑡 − 𝛼), 

𝑦2 − 𝑦1

𝐿
= 𝐵𝑠𝑖𝑛 (√𝑘𝐿2

2𝐼
𝑡 − 𝛽). 

These equations are clearer and capture the essential 

characteristics of the system. By substituting back 𝑦′ and 

rearrangements, the equation of motion in the original 

coordinates are: 

𝑦1 =
1

2
[
𝑚𝑔

𝑘
+ 2𝐴𝑠𝑖𝑛 (√

2𝑘

𝑚
𝑡 − 𝛼) − 𝐿𝐵𝑠𝑖𝑛 (√𝑘𝐿2

2𝐼
𝑡 − 𝛽)] 

𝑦2 =
1

2
[
𝑚𝑔

𝑘
+ 2𝐴𝑠𝑖𝑛 (√

2𝑘

𝑚
𝑡 − 𝛼) + 𝐿𝐵𝑠𝑖𝑛 (√𝑘𝐿2

2𝐼
𝑡 − 𝛽)] 

The motion of 𝑦1 and 𝑦2 is more complicated and the 

equation obscures the fact that it is just made up of two 

component that oscillate sinusoidally at pure frequency. 

The difference may be slight but resolving a more complex 

system into normal modes, one that has more degrees of 

freedom, will lend a better conceptual understanding and 

easier computation. 

An oscillating system that has 𝑛 degrees of freedom has 

𝑛 amount of normal modes. Such system has a behavior 

described by a 𝑛 differential equation of the form 

𝑑2

𝑑𝑡2
𝑥⃗ = 𝑉𝑥⃗ 

Where 𝑥⃗ is a column vector denoting the coordinates. It is 

assumed the differential equation has a complete solution, 

and therefore the matrix 𝑉 is non-singular. Matrix 𝑉 then 

has the same number of eigenvalues as the dimension of 

the space, and hence the same number of normal modes. 

In this example, normal modes are naturally found by 

trying to apply physical laws to describe the system. In 

other cases, normal modes may be found by a method. A 

procedural method to find the normal modes is shown in 

the following section. 

 

B. Method of Finding Normal Modes in Coupled 

Oscillators 

Let us consider a common and simplest form of coupled 

oscillators which is a system of two masses connected by 

three springs. Start with the equation of motion 

 

Figure 5. A system of two masses connected by three 

springs 

𝑚
𝑑2𝑥1

𝑑𝑡2
= −𝑘𝑥1 + 𝑘(𝑥2 − 𝑥1) = −2𝑘𝑥1 + 𝑘𝑥2, 

𝑚
𝑑2𝑥2

𝑑𝑡2
= −𝑘𝑥2 − 𝑘(𝑥2 − 𝑥1) = −2𝑘𝑥2 + 𝑘𝑥1, 

which can be rearranged, with  𝜔2 = 𝑘 𝑚⁄ , into 

𝑑2𝑥1

𝑑𝑡2
+ 2𝜔2𝑥1 − 𝜔2𝑥2 = 0, 

𝑑2𝑥2

𝑑𝑡2
+ 2𝜔2𝑥2 − 𝜔2𝑥1 = 0. 

With some rearrangement, the equations can be 

condensed into matrix form 

𝑑2

𝑑𝑡2
(

𝑥1

𝑥2
) = (−2𝜔2 𝜔2

𝜔2 −2𝜔2) (
𝑥1

𝑥2
). 

The technique to solve the differential equation is by 

simply substituting the form 

(
𝑥1

𝑥2
) = (

𝐴1

𝐴2
) sin 𝛼𝑡. 

Given that the second derivative of sin 𝛼𝑡 is −𝛼2 sin 𝛼𝑡, 

the equation becomes 

−𝛼2 sin 𝛼𝑡 (
𝐴1

𝐴2
) = sin 𝛼𝑡 (−2𝜔2 𝜔2

𝜔2 −2𝜔2) (
𝐴1

𝐴2
) ⟹ 

0 = (−𝛼2 + 2𝜔2 −𝜔2

−𝜔2 −𝛼2 + 2𝜔2) (
𝐴1

𝐴2
) 

To obtain nontrivial solution of 𝐴1 and 𝐴2, we must have 

the determinant of the matrix to equal zero. Notice that this 

is remarkably similar to the process of finding eigenvalues.  

0 = 𝛼4 − 4𝛼2𝜔2 + 3𝜔4. 
The roots of this equation turn to be 𝛼 = ±𝜔 and 𝛼 =

±√3𝜔. If 𝛼 = ±𝜔 , then 𝐴 = 𝐵. If 𝛼 = ±√3𝜔 then 𝐴 =
−𝐵. It is understood that each of these two cases are normal 

modes of the system. Breezing through the math here, the 
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solution to the original system of differential equation is 

then the superposition 

(
𝑥1

𝑥2
) = 𝐴1 (

1
1

) sin(𝜔𝑡) + 𝐴2 (
1
1

) sin(𝜔𝑡) 

+𝐴3 (
1

−1
) sin(√3𝜔𝑡) + 𝐴4 (

1
−1

) sin(√3𝜔𝑡) 

By combining sine function with the same frequency, we 

get 

(
𝑥1

𝑥2
) = 𝐵+ (

1
1

) sin(𝜔𝑡 + 𝜑+)

+ 𝐵− (
1

−1
) sin(√3𝜔𝑡 + 𝜑−). 

The normal mode (1, 1), which oscillates at frequency 

𝜔, corresponds to the simultaneous back and forth motion 

of both masses 𝜔. Normal mode  (1, −1), which oscillates 

at frequency √3𝜔, corresponds to each mass moving back 

and forth in opposing direction. The original system is now 

decoupled into these two normal modes. 

 

Figure 6. shows the two normal modes of the system. 

Figure 6(a) shows the masses oscillating simultaneously in 

the same diretion. Figure 6(b) shows the masses oscillating 

in opposing direction 

As shown in Figure 6, the normal modes reveal some 

interesting motion. Figure 6(a) shows the system when it 

oscillates purely in normal mode (1, 1). The masses 

appears to be moving back-and-forth as a single mass. In 

this mode, the spring in the center effectively does not 

exist. The frequency of this mode is √𝑘 𝑚⁄ . The system 

moves as if only influenced by one spring. 

Figure 6(b) shows the other normal mode where each 

mass oscillates in opposite direction. Each spring now 

contributes more forces to the masses, which makes the 

masses oscillate faster. 

 

C. Generalized System of N Coordinates 

In the previous example, (1, 1) and (1, −1) are 

eigenvectors with the frequencies being their 

corresponding eigenvalue. Indeed, the process of finding 

normal modes is that of finding eigenvectors of the system 

coordinate space.  

By describing the motion in terms of normal modes, a 

change of basis occurs from the original coordinates used 

to describe the system to the normal modes. Recall the 

matrix equation  

𝑑2

𝑑𝑡2
𝑥⃗ = 𝑉𝑥⃗. 

This equation encodes a simultaneous differential equation 

that describe an oscillating system. A 2 dimensional 

example is shown in the previous example. 

Generally, a coupled oscillating system that has 𝑛 

degrees of freedom is described by 𝑛 equation: 

𝑑2

𝑑𝑡2
𝑥1 = 𝑉11𝑥1 + 𝑉12𝑥2 + ⋯ + 𝑉1𝑛𝑥𝑛, 

𝑑2

𝑑𝑡2
𝑥2 = 𝑉21𝑥1 + 𝑉12𝑥2 + ⋯ + 𝑉2𝑛𝑥𝑛 , 

⋮ 
𝑑2

𝑑𝑡2
𝑥𝑛 = 𝑉𝑛1𝑥1 + 𝑉𝑛2𝑥2 + ⋯ + 𝑉𝑛𝑛𝑥𝑛. 

The matrix 𝑉 is defined as thus.  

If normal modes are used as the basis of the coordinate 

system, the system of equations become a system of 𝑛 

amount of independent simple harmonic differential 

equations as has been demonstrated before: 

𝑑2

𝑑𝑡2
(

𝑥1
′

𝑥2
′

⋮
𝑥𝑛

′

) = (

𝑉11
′ 0 ⋯ 0

0 𝑉22
′  0

⋮  ⋱ ⋮
0 0 ⋯ 𝑉𝑛𝑛

′

) (

𝑥1
′

𝑥2
′

⋮
𝑥𝑛

′

). 

One can achieve such transformation by diagonalizing 

the matrix 𝑉. Let us assume that 𝑉 has 𝑛 distinct 

eigenvalues. In this condition, 𝑉 is diagonalizable. 

Let 𝑉 = 𝑃−1𝑉′𝑃. Then 

𝑑2

𝑑𝑡2
𝑥⃗ = 𝑃−1𝑉′𝑃𝑥⃗ ⟹ 

𝑃
𝑑2

𝑑𝑡2
𝑥⃗ = 𝑃𝑃−1𝑉′𝑃𝑥⃗ ⟹ 

𝑃
𝑑2

𝑑𝑡2
𝑥⃗ = 𝑉′𝑃𝑥⃗ ⟹ 

𝑑2

𝑑𝑡2
𝑃𝑥⃗ = 𝑉′𝑃𝑥⃗. 

The last step can be done because 𝑃 has no dependece to 

time and differentiation is a linear operation. Notice that 

matrix 𝑃 is naturally a change of basis matrix, with 

eigenvectors of matrix 𝑉 as its columns  

𝑥⃗′ = 𝑃𝑥⃗. 
Each column of 𝑃 is an eigenvector that correspond to a 

normal mode. The diagonal elements of 𝑉′ is proportiona; 

to the square of the frequency of each normal mode. 

What has not been discussed much is the case when one 

of the eigenvalues happen to be zero or there happens to be 

multiple  same eigenvalues. In this case, some of the normal 

modes will be degenerate. This just means that the 

dynamical system is made up of fewer fundamental 

oscillation than the amount of coordinates used to describe 

the system.  

 

IV.   CONCLUSION 

 The motion of a dynamical system of coupled 

oscillators can be complex. Describing the behavior of 

such system as being composed of independent oscillators 

lend to a deeper conceptual understanding of the system 

and efficient computation.  
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Though this paper only considers examples in 

mechanical physics, an oscillating system widely occurs in 

other disciplines of science. The generalized form of 

normal mode can be applied to any other oscillating 

dynamical system. 
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